## Physics Aspects of a RIA Facility Brad Sherrill

NSAC Costing Subcommittee, Jan. 2001

- **→** The Nature of Nucleonic Matter
- **→** The Origin of the Elements
- **→** Tests of the Standard Model

#### Rare Isotope Accelerator - RIA

- Most intense source of rare isotopes
  - $\triangleright$  High power primary beams up to U at 100kW and E > 400 MeV/nucleon.
  - ➤ Possibility to optimize the production method for a given nuclide.
- Four Experimental Areas (simultaneous users)



Experimental Areas:

1: < 12 MeV/u 2: < 1.5 MeV/u 3: Nonaccelerated 4: In-flight fragments

## Optimization of the Driver Linac Energy



## What scientific questions will RIA answer?

- Origin of the elements and energy generation in the cosmos by nuclear processes
  - Supernovae science (requires nuclear science input)
  - The nature of neutron stars (x-ray bursts, crust and bulk properties)
- Nature of nucleonic matter
  - What combinations of neutrons and protons can make up a nucleus?
  - What is the appropriate, comprehensive model for nuclei and how do we understand it in terms of nucleon-nucleon interactions and ultimately in terms of the strong interaction?
  - Can we understand the nature of unusual forms of nuclear matter (halos,skins)?
  - What is the isospin dependence of the nuclear matter equation of state?

#### What scientific questions will RIA answer?

#### Tests of the standard model

- What is the nature of CP violation? The best probe of flavor-conserving CP violation is in the measurement of an atomic EDM. Radon isotopes provide good cases for these studies.
- RIA will exploit the larger Parity Violation in Francium isotopes to search for physics beyond the Standard Model.
- Are there weak interactions beyond V-A?
- RIA may help improve the precision of the measurement of V<sub>ud</sub> in order to test the unitarity of the CKM Matrix.

# What is the significance of RIA for science in general?

Astronomy CHANDRA INTEGRAL HUBBLE New astronomical observatories and observations



Nuclear properties of nuclides far from stability

**Mesoscopic Physics** 

Small scale quantum systems (femto-technology) The nature of nucleonic matter and many-body quantum systems

Particle Science

**Beyond the Standard Model** 



Availability of nuclei with special features and/or decay modes

#### The Discovery Potential of RIA



#### Sample Experiments at RIA

- Limits of nuclear stability
  - Nuclide identification (1/week)
  - Fission mass surface (1000/s)
  - Super-heavy Elements (>10<sup>9</sup>/s for mid-mass nuclei)
- Nuclear bench marks (Magic Nuclei)
  - 132Sn (109/s)
  - 48,78Ni,  $^{100}$ Sn (>.01/s)
- r-process nuclides
  - Half-lives (1/d)
  - Masses (>100/d)
- Evolution of structure with isospin (neutron skin)
  - Single step Coulomb excitation, Knockout (>0.01/s)
  - Multi-step Coulomb excitation (>100/s)
  - Nucleon transfer ( $>10^3/s$ )
- Halo Nuclei
  - Wave functions (>0.01/s)
- Tests of the standard model
  - Rn (>10<sup>9</sup>)
  - Fr (>10<sup>9</sup>)

#### Advantages of ISOL/Reaccelerated Beams

- Stopped and cooled beams for trap measurements (e.g., Rn and Fr)
- High quality beams at or near the Coulomb barrier
- Low energy reactions mechanisms
  - Fusion/Evaporation
  - Near barrier transfer
  - Proton and neutron stripping reactions for the study of single particle and multi-particle states
  - Coulomb excitation (multiple excitations to study higher lying states)
  - Direct measurement of resonant and direct capture reactions
- Experimental considerations
  - Thin targets (100 μg/cm²)
  - Isobar separation is required
  - Reaccelerated beam experiments can work with 10<sup>3</sup> ions/s or more (ANL,ND,TAM)

#### Advantages of Fast Beams

- > 50MeV/u without reaccelerating
- High energy reactions mechanisms
  - Eikonal methods for direct reactions
  - Giant Resonance excitation
  - Single-Step Coulomb excitation (E1/M1/E2)
  - EOS studies (flow, balance energy)
  - Charge exchange
- High sensitivity
  - Thick targets (g/cm<sup>2</sup> vs. mg/cm<sup>2</sup>) and 1000-10,000 gain in luminosity
  - Relatively easy identification of single ions (A,Z identification)
  - Ability to work with atoms/week (<sup>48</sup>Ni GANIL, <sup>100</sup>Sn GSI/GANIL)
  - Extend the scientific reach to 4-5 mass units farther from stability

#### Comparison of RIA to other RI Facilities

- NSCL CCF is lower in yield by a factor of 20 for the lightest elements and more than 10,000 for heavier elements.
- <u>ISAC/TRIUMF</u> is limited to traditional ISOL production of ions. This means intense beams of a limited number of nuclides.
- <u>RIKEN RIF</u> will have 400 MeV/nucleon Uranium, but with 10 to 100x less intensity and no post acceleration capability.
- <u>GSI</u> will have 1 GeV/nucleon Uranium but with 10 to 100x less intensity and no post acceleration capability.
- Europe and Japan are discussing an <u>advanced ISOL</u> facility to complement GSI and RIKEN.

#### **Facility Considerations**

#### Demands on use

- The user community is expected to be around 500 scientists per year (total world-wide community is 2000)
- $\triangleright$  A typical load will be 1 w/(10 user experiment)
- ➤ 5000 h/y operation implies multi-user operation is required
- Program considerations (10-20 weeks)
  - > r-process half-life and mass measurements
  - > Changes in shell structure (transfer, CX, knock out)
  - > Halo nuclei
  - ➤ Atomic dipole, Parity violation
- Isotope "mining" for applications

#### **Summary**

- The driver should provide beams of elements from hydrogen (helium) to uranium.
- The desired production energy is greater than 400 MeV/nucleon.
- The facility should be able to provide for at least two simultaneous users.
- Experimental areas
  - Non-accelerated beams
  - Beams of up to 1 MeV/nucleon for astrophysics
  - Post accelerated beams of energy up to the Coulomb barrier for all elements up to Uranium and somewhat higher for the lighter elements
  - Availability of fast beams of energy 50-400 MeV/nucleon